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Let f (x) = p(x) − q(x) be a polynomial with real coefficients whose roots have nonnegative 
real part, where p and q are polynomials with nonnegative coefficients. In this paper, 
we prove the following: Given an initial point x0 > 0, the multiplicative update xt+1 =
xt p(xt)/q(xt) (t = 0, 1, . . . ) monotonically and linearly converges to the largest (resp. 
smallest) real roots of f smaller (resp. larger) than x0 if p(x0) < q(x0) (resp. q(x0) < p(x0)). 
The motivation to study this algorithm comes from the multiplicative updates proposed in 
the literature to solve optimization problems with nonnegativity constraints; in particular 
many variants of nonnegative matrix factorization.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

Let f (x) = p(x) − q(x) be a polynomial where p and q
have nonnegative coefficients. We would like to compute a 
root of f , that is, find x such that f (x) = 0 ⇐⇒ p(x) =
q(x). Let x0 ∈ R with x0 > 0 (the same idea can be used if 
x0 is negative), and let us denote r1 (resp. rm) the smallest 
(resp. largest) nonnegative real root of f . Let us also define

r =
{

the largest real root of f smaller than x0 if x0 ≥ r1,

0 otherwise,

and

r̄ =
{

the smallest real root of f larger than x0 if x0 ≤ rm,

+∞ otherwise,

such that x0 ∈ [r, ̄r]. Note that if x0 is equal to a root of f , 
then x0 = r = r̄. The point x0 is a root of f if and only if 
p(x0) = q(x0), otherwise one may apply the multiplicative 
updates x0

p(x0)
q(x0)

and x0
q(x0)
p(x0)

to generate new points that 
hopefully get closer to roots of f . The intuition is that the 
roots of f are fixed points of these updates. Suppose with-
out loss of generality that p(x0) > q(x0). Then, we have
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x−1 = x0
q(x0)

p(x0)
< x0 < x1 = x0

p(x0)

q(x0)
.

Two points have been generated: x1 greater than x0 and 
the x−1 smaller than x0. In this paper, we will prove that, 
under some assumptions, x1 and x−1 belong to the same 
interval as x0, that is,

r ≤ x−1 < x0 < x1 ≤ r̄,

so that applying the above multiplicative updates itera-
tively generates two sequences converging monotonically 
to r and r̄ (Theorems 1 and 2). We will also prove that 
this algorithm has local linear convergence for simple roots 
(Theorem 3).

The motivation to study the above updates comes from 
the paper [1] where such multiplicative updates are used 
to solve quadratic programs with nonnegativity constraints, 
and from the literature on nonnegative matrix factorization 
(NMF) where such updates are used extensively to find 
solutions of the first-order optimality conditions; see for 
example [2] and the references therein. The popularity of 
these multiplicative updates in the NMF literature comes 
from the fact that (1) they were the algorithm proposed 
in [3,4] that launched the research on NMF, (2) they are 
rather simple to derive and implement, and (3) there is no 
parameter to tune. However, they usually converge slower 
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than more sophisticated techniques such as coordinate de-
scent methods; see, e.g., [5].

The goal and main contribution of this paper is to 
get more insight on such multiplicative updates by prov-
ing their convergence for univariate polynomials. It is or-
ganized as follows. Section 2 gives the assumptions and 
the notation used throughout the paper, Section 3 proves 
the convergence of the multiplicative updates as outlined 
above, and Section 4 provides a numerical example.

2. Assumptions and notation

Let us write the polynomial f of degree n as follows

f (x) =
n∑

i=0

(−1)ian−i x
n−i, where an−i ∈ R for 1 ≤ i ≤ n,

and where we assume an = 1 without loss of generality.

Assumption 1. The real parts of the roots of f are nonneg-
ative, and f has at least one root with positive real part.

If Assumption 1 is not satisfied, one can shift the poly-
nomial, that is, f (x) ← f (x − x0) for some real x0 suffi-
ciently large. The polynomial f can be split as the differ-
ence of two polynomials with nonnegative coefficients as 
follows:

f (x) =
n∑

i=0

(−1)ian−i x
n−i = p(x) − q(x), (1)

where

p(x) =
	(n−1)/2
∑

i=0

an−2i xn−2i and

q(x) =
�(n−1)/2�∑

i=0

an−(2i+1) xn−(2i+1). (2)

Defining a j = 0 for all j /∈ {0, 1, . . . , n}, we also have

q(x) =
	(n−1)/2
∑

i=0

an−(2i+1) xn−(2i+1),

so that q and p sum over the same indices, which will be 
useful later. Let us denote

r1 ≤ r2 ≤ · · · ≤ rm

the real roots of f in nondecreasing order. Let us also de-
note r0 = 0, rm+1 = +∞ and ri the complex roots of f for 
m + 2 ≤ i ≤ n + 1, and I = {1, 2, . . . , m, m + 2, . . . , n + 1}
the indices of the roots of f . Therefore, we have f (x) =∏

i∈I (x − ri), an = 1, and

an− j =
∑

J⊂I,| J |= j

∏
i∈ J

ri for 1 ≤ j ≤ n. (3)

Under Assumption 1, the coefficients of a polynomial f are 
alternating, that is, ai ≥ 0 for 0 ≤ i ≤ n, since Re(ri) ≥ 0 for 
all i ∈ I . In fact, all real roots are nonnegative while, for the 
complex roots, we have the following result.
Lemma 1. Let Z = ∪k
i=1{zi, ̄zi} be a set of k complex numbers 

and their conjugates with nonnegative real parts. Then, for any 
1 ≤ j ≤ 2k,

f (Z, j) =
∑

J⊂Z,| J |= j

∏
zi∈ J

zi is a nonnegative real number.

Proof. We prove the result by induction on k (|Z| contains 
2k elements).
Case k = 1. For Z = {z, ̄z}, we have f (Z, 1) = z + z̄ =
2Re(z), and f (Z, 2) = zz̄ = |z|2.
Induction. Let Z =Z ′ ∪ {z, ̄z}. We have

f (Z, j) = zf (Z ′, j − 1) + z̄ f (Z ′, j − 1) + zz̄ f (Z ′, j − 2)

+ f (Z ′, j)

= 2Re(z) f (Z ′, j − 1) + |z|2 f (Z ′, j − 2)

+ f (Z ′, j),

where Z ′ contains 2k − 2 elements. �
Moreover, p(x) > 0 and q(x) > 0 for all x > 0 since p

and q have at least one positive coefficient since f has at 
least one root with positive real part. For 1 ≤ k ≤ m, let us 
define a(n− j,k) as follows

a(n− j,k) :=
⎧⎨
⎩

∑
J⊂I,| J |= j,k/∈ J

∏
i∈ J ri 1 ≤ j ≤ n,

1 j = 0,

0 otherwise.
(4)

We have that a(n− j,k) is the sum of the same terms as an− j

in (3) except the ones where the kth root of f appears. 
This implies that

a(n− j,k) = an− j − rka(n−( j−1),k). (5)

In fact, a(n−( j−1),k) is the sum of all the products of j − 1
roots of f except for rk . Note that a(n− j,k) ≥ 0 for all j, k
for a polynomial f satisfying Assumption 1 (for the same 
reasons as for f , since we only allow rk to be a real root 
with 1 ≤ k ≤ m). For all j, k, let us show that an−( j+1) −
rkan− j = a(n−( j+1),k) − r2

k a(n−( j−1),k) . Using (5), we obtain

an−( j+1) − rkan− j = (
a(n−( j+1),k) + rka(n− j,k)

)
− rk

(
a(n− j,k) + rka(n−( j−1),k)

)
= a(n−( j+1),k) − r2

k a(n−( j−1),k). (6)

3. Main result

We can now prove our main result.

Theorem 1. Let f (x) be a univariate polynomial of degree n de-
fined as in (1) and satisfying Assumption 1, and let p(x) and q(x)
be defined as in (2). Let also x0 ∈ R with 0 < x0 ∈ [rk, rk+1] for 
some k ∈ {0, 1, . . . , m}. Then,

x1 = x0
p(x0)

q(x0)
∈ [rk, rk+1] and

x−1 = x0
q(x0)

p(x0)
∈ [rk, rk+1].
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Proof. Since p(x) and q(x) only intersect at the roots of f , 
we have

p(x0) ≥ q(x0) ⇒ p(x) ≥ q(x) for x ∈ [rk, rk+1], (7)

and similarly for p(x0) ≤ q(x0). Let us focus on the case 
p(x0) ≥ q(x0). The case p(x0) ≤ q(x0) can be treated in a 
similar way. Clearly, by (7), x0

p(x0)
q(x0)

≥ x0 ≥ rk and x0
q(x0)
p(x0)

≤
x0 ≤ rk+1. It remains to show that (i) x0

q(x0)
p(x0)

≥ rk , and 
(ii) x0

p(x0)
q(x0)

≤ rk+1. Let us start with (i). We have

x0
q(x0)

p(x0)
≥ rk ⇐⇒ x0q(x0) − rk p(x0) ≥ 0

⇐⇒
⎡
⎣	(n−1)/2
∑

i=0

an−(2i+1) xn−2i
0

⎤
⎦

−
⎡
⎣	(n−1)/2
∑

i=0

rkan−2i xn−2i
0

⎤
⎦ ≥ 0

⇐⇒ α :=
	(n−1)/2
∑

i=0

(an−(2i+1) − rkan−2i)xn−2i
0

≥ 0. (8)

Therefore, it remains to prove that α is nonnegative. Us-
ing (6), the fact that x0 ≥ rk ≥ 0 and an− j,k ≥ 0 for all j, k, 
we obtain

an−(2i+1) − rkan−2i = a(n−(2i+1),k) − r2
k a(n−(2i−1),k)

≥ a(n−(2i+1),k) − x2
0a(n−(2i−1),k). (9)

Replacing the expression in brackets in (8) by the right-
hand side of (9), we get a lower bound for α:

α ≥
	(n−1)/2
∑

i=0

(
a(n−(2i+1),k) − x2

0a(n−(2i−1),k)

)
xn−2i

0

=
	(n−1)/2
∑

i=0

a(n−(2i+1),k) xn−2i
0

−
	(n−1)/2
∑

i=1

a(n−(2i−1),k) xn−2(i−1)
0

=
	(n−1)/2
∑

i=0

a(n−(2i+1),k) xn−2i
0

−
	(n−1)/2
−1∑

j=0

a(n−(2 j+1),k) xn−2 j
0

=
	(n−1)/2
−1∑

i=0

(
a(n−(2i+1),k) − a(n−(2i+1),k)

)
︸ ︷︷ ︸

=0

xn−2i
0

+ γnx0 ≥ 0,

where
γn =

⎧⎪⎪⎨
⎪⎪⎩

0 if n is even since a(n−(2i+1),k) = a(−1,k) = 0
for i = 	(n − 1)/2
 = n/2,

1 if n is odd since a(n−(2i+1),k) = a(0,k) = 1
for i = 	(n − 1)/2
 = (n − 1)/2.

The first equality follows from the fact that a(n+1,k) = 0 by 
definition (4), the second simply by setting j = i − 1, and 
the third by putting back the terms together.

Let us now focus on (ii). The proof is rather similar 
to (i) but we provide it here for completeness. We have 
x0

p(x0)
q(x0)

≤ rk+1 ⇐⇒ rk+1q(x0) − x0 p(x0) ≥ 0

⇐⇒
⎡
⎣	(n−1)/2
∑

i=0

rk+1an−(2i+1) xn−(2i+1)
0

⎤
⎦

−
⎡
⎣	(n−1)/2
∑

i=0

an−2i xn−(2i−1)
0

⎤
⎦ ≥ 0

⇐⇒
⎡
⎣	(n−1)/2
+1∑

j=i+1=1

rk+1an−(2 j−1) xn−(2 j−1)
0

⎤
⎦

−
⎡
⎣	(n−1)/2
∑

i=0

an−2i xn−(2i−1)
0

⎤
⎦ ≥ 0

⇐⇒ β :=
	(n−1)/2
+1∑

i=0

(rk+1an−(2i−1) − an−2i) xn−(2i−1)
0

≥ 0, (10)

where an−(2i−1) = an+1 = 0 for i = 0, and an−2i = 0 for i =
	(n − 1)/2
 + 1. Using (6) multiplied by −1, and since 0 ≤
x0 ≤ rk+1 and ak

n− j ≥ 0 for all j, we obtain

rk+1an−(2i−1) − an−2i = r2
k+1a(n−(2i−2),k+1) − a(n−2i,k+1)

≥ x2
0a(n−(2i−2),k+1) − a(n−2i,k+1).

(11)

Similarly as for (i), injecting (10) in (11), we can lower 
bound β as follows

β ≥
	(n−1)/2
+1∑

i=0

(
x2

0a(n−(2i−2),k+1) − a(n−2i,k+1)

)
xn−(2i−1)

0

=
	(n−1)/2
+1∑

i=1

a(n−(2i−2),k+1)x
n−(2i−3)
0

−
	(n−1)/2
∑

i=0

a(n−2i,k+1)xn−(2i−1)
0

=
	(n−1)/2
∑
j=i−1=0

a(n−2 j,k+1)xn−(2 j−1)
0

−
	(n−1)/2
∑

i=0

a(n−2i,k+1)xn−(2i−1)
0

=
	(n−1)/2
∑ (

a(n−2i,k+1) − a(n−2i,k+1)

)
xn−(2i−1)

0 = 0. �

i=0
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Theorem 1 allows us to construct two sequences con-
verging monotonically to rk and rk+1, given an initial point 
rk < x0 < rk+1; see Algorithm 1.

Algorithm 1 Multiplicative updates for polynomial root 
finding.
Require: The polynomial f (x) = p(x) − q(x) where p and q have nonneg-

ative coefficients, an initial point x0 > 0 with x0 ∈ [rk, rk+1] where rk

is the kth nonnegative real root of f (where r0 = 0 and rm+1 = +∞).
Ensure: If f satisfies Assumption 1, the sequence xt (resp. x−t ) converges 

to rk+1 (resp. rk) if p(x0) > q(x0), to rk (resp. rk+1) otherwise.

1: for t = 0, 1, 2, . . . do
2: xt+1 = xt

p(xt )
q(xt )

.

3: x−(t+1) = x−t
q(x−t )
p(x−t )

.
4: end for

Theorem 2. Under the same assumptions as in Theorem 1, and 
assuming without loss of generality that p(x0) > q(x0) for rk <

x0 < rk+1 , the sequences {xt}t≥1 and {xt}t≤−1 generated by Al-
gorithm 1 converge to rk+1 and rk, respectively.

Proof. Let us focus on the sequence {xt}t≥1; the same 
proof holds for {xt}t≤−1. We have p(x0) > q(x0) since x0

is not a root of f by assumption. By Theorem 1,

x0 < x1 < x2 < · · · ≤ rk+1.

Therefore, {xt}t≥1 must converge to a limit point s (possi-
bly +∞ if k = m). Suppose s < rk+1. For any x ∈ [x0, s], we 
have

x
p(x)

q(x)
≥ xL, with L = min

x∈[x0,s]
p(x)

q(x)
> 1,

since p(x) > q(x) for all x ∈ [x0, s] ⊂]rk, rk+1[. By construc-
tion, we therefore have x0Lt ≤ xt ≤ s < +∞ for all t ≥ 1
which is a contradiction since L > 1. �
Remark 1. For Theorems 1 and 2 to hold, the decomposi-
tion f (x) = p(x) − q(x) can be chosen differently as in (2)
as long as p and q have nonnegative coefficients. In fact, 
for any polynomial d(x) with nonnegative coefficients, we 
can use the decomposition f (x) = (

p(x) + d(x)
) − (

q(x) +
d(x)

)
which will simply make Algorithm converge slower 

since p(x)+d(x)
q(x)+d(x) will be closer to 1 than p(x)

q(x) .

The simplest case for which Theorems 1 and 2 apply is 
when f (x) = x − b for b > 0. For x0 < b (resp. x0 > b), the 
updates are given by

x1 = x0
x0

b
and x−1 = x0

b

x0
= b,

so that x−1 converges in one step to the root of f

while {xt}t≥0 = x0
( x0

b

)2t−1
converges to zero (resp. infin-

ity) quadratically.
For higher degree polynomials, the convergence is lin-

ear, as shown in the theorem below.

Theorem 3. If f satisfies Assumption 1, Algorithm 1 asymptot-
ically converges linearly to simple roots of f .
Proof. Let us focus on the one-point iteration F (x) = x p(x)
q(x)

where

• the initial point x0 is smaller but sufficiently close to 
the simple root α, that is, α − δ < x0 < α for some 
δ > 0,

• p(x0) > q(x0) ⇐⇒ f (x0) > 0.

The other cases can be treated in a similar way.
Since α is a simple root of f , we have f ′(α) �= 0 hence 

p′(α) < q′(α) for δ sufficiently small, since p(x0) > q(x0)

and p(α) = q(α). By Lagrange mean value theorem, we 
have

xt+1 = F (xt) = α + (xt − α)F ′(ζ ) for some ζ ∈ [xt ,α].
(12)

By Theorem 1, x0 < x1 < · · · ≤ α, so that the error et at 
the tth step of Algorithm 1 satisfies et = α − xt ≥ 0. In-
jecting et in (12), we obtain et+1 = F ′(ζ )et . If we show 
that 0 ≤ � = minα−δ<ζ<α F ′(ζ ) < 1 for δ sufficiently small, 
the proof is complete since this implies a linear conver-
gence rate of ratio � < 1. First, et ≥ 0 for all t implies that 
F ′(ζ ) ≥ 0. Second, recall that since q is a polynomial with 
nonnegative coefficients and at least one positive coeffi-
cient (by Assumption 1), q(x) > 0 for all x > 0 hence F (x)
is differentiable for all x > 0. We compute

F ′(α) = p(α)

q(α)
+ α

p′(α)q(α) − q′(α)p(α)

q2(α)

= 1 − α
q′(α) − p′(α)

q(α)
, (13)

since p(α) = q(α). We have F ′(α) < 1 since α > 0, q′(α) >
p′(α) and q(α) > 0. �

Note that the convergence cannot be in general faster 
than linear since F (x) has order one, where the order p
of a one-point iteration F is defined as [6, p. 344, Theo-
rem 8.1]

F (α) = α; F ( j)(α) = 0,0 ≤ j < p; F (p)(α) �= 0,

with F ( j) the jth derivative of F . The multiplicative up-
dates have order one at simple roots of f .

4. Numerical example

Let us consider

f (x) = (x − 1)(x − 2)(x − 3)(x − 1 + i)(x − 1 − i)

= x5 − 8x4 + 25x3 − 40x2 + 34x − 12,

with p(x) = x5 +25x3 +34x and q(x) = 8x4 +40x2 +12, for 
which r0 = 0, r1 = 1, r2 = 2, r3 = 3, r4 = +∞, r5 = 1 + i, 
r6 = 1 − i. Fig. 1 displays the polynomial (on the left) 
along with the evolution of the iterates generated by Al-
gorithm 1 using x0 = 2.5 (on the right). As proved in The-
orems 1 and 2, the iterates remain in the interval [2, 3]
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Fig. 1. (Left) Polynomial f (x). (Right) Evolution of the iterates under the multiplicative updates.
Fig. 2. Evolution of the logarithm of the error of the iterates under the 
multiplicative updates.

and converge to the bounds of this interval. In this exam-
ple, p(x0) < q(x0) hence the sequence {xt}t≥0 generated by 
Algorithm 1 converges to 2 and {xt}t≤0 to 3.

Fig. 2 illustrates the linear convergence of the updates 
as proved in Theorem 3. For the root r3 = 3, the asymptotic 
rate of convergence from (13) is given by

F ′(3) = 1 − α
q′(α) − p′(α)

q(α)
= 1 − 3

q′(3) − p′(3)

q(3)

= 0.9706,

so that Algorithm 1 (asymptotically) requires about 77 it-
erations (F ′(3)77 ≈ 0.1) to gain one digit of accuracy. For 
the root r2 = 2, we obtain

1 − α
p′(α) − q′(α)

q(α)
= 1 − 2

p′(2) − q′(2)

q(2)
= 0.9867,

so that about 170 iterations are necessary to gain one digit 
of accuracy.

5. Discussion

In this paper, we analyzed simple multiplicative up-
dates to find the nonnegative real roots of a polynomial. 
We proved a rather surprising fact that under the assump-
tion that the roots of f have nonnegative real parts (As-
sumption 1), the updates always remain in the same inter-
val between two real roots and monotonically converge to 
these roots. These updates converge relatively slowly (lin-
early for simple roots). The main motivation to study these 
updates came from a vast body of literature using such 
updates for matrix factorization problems with nonnega-
tivity constraints. However, it is unlikely for these updates 
to be competitive for polynomial root finding as it is a 
highly studied problem for which there exist more gen-
eral and much more efficient methods. However, it would 
be an interesting direction for further research to analyze 
acceleration schemes, and use these schemes in practical 
applications from the nonnegative matrix factorization lit-
erature [2]. For example, we observed that shifting the 
polynomial f can accelerate convergence significantly (as 
the ratio between p and q goes away from one).
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